Comparison of UPLC-QTOF and GCMS for Detection of Designer Drugs in Urine Samples

Jill Yeakel, MS
Disclaimer

The project was supported by Award No. 2013-DN-BX-K018, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication/program/exhibition are those of the author(s) and do not necessarily reflect those of the Department of Justice.
Project Background

- Attendees of electronic dance music festivals (EDM) demonstrate high rates of experimental drug use.
- Collection of biological specimens of EDM attendees increases treatment ability for those experiencing adverse reactions and increases ability of toxicology labs to detect compounds.
Project Objectives

• Analyze samples to obtain information regarding:
 – New drugs on the market
 – Prevalence of designer drugs
 – Identification of novel designer drugs and metabolites
 – Correlations and comparisons of designer drugs in blood, urine and oral fluid specimens
Sample Collection

• Approached participants on their way to EDM festival
• Location was ~100 yards from entrance gate
• Participants signed consent forms and were asked survey questions
• Samples collected included:
 – Oral Fluid Collection
 • Alere DDS2 Cartridge
 • Quantisal
 – Urine
 – Blood

Disclosure: Participants were not required to donate all 4 samples, and only donated samples based on their comfort level. The gift card incentive was only given if the participant donated a blood sample.
Urine Results

• Total number of urine samples collected: 104

• Samples underwent a battery of screen tests:
 – Immunoassay
 – Volatiles
 – RapidFire-MS/MS
 – GC/MS
 – LC-QTOF
 – LC-MS/MS
COMPARISON BETWEEN GC/MS AND LC-QTOF AS SCREENING TECHNIQUES
Sample Preparation (GC/MS)

• To 2 mL urine, add internal standard, 100 mM phosphate buffer (pH 6.0)

• To a copolymeric bonded phase extraction column:
 – **Condition**: Methanol, Water, 100 mM phosphate buffer
 – **Apply Sample**
 – **Wash**: Water, 20% Acetonitrile/Water, 100 mM Acetic Acid, then DRY
 – **Wash**: Hexane, Methanol, then DRY
 – **Elute**: Isopropanol, Ammonium Hydroxide, Methylene Chloride

• **Evaporate** (add 10% HCl) and **Reconstitute** with Acetonitrile
GC/MS Parameters

- Agilent GC (6890)/ MS (5975)
- Column: DB5MS 20m x 0.18mm x 0.18µm
- Split Ratio: 10:1
- Injection Temperature: 250°C
- Injection Volume: 2µL
- GC Oven Programming:
 - Initial 70°C (1 min)
 - Ramp 20°C/min
 - Final 300°C (5.5 min)
- Total Run Time: 17.5 min
- MS Acquisition: 42-550 m/z
Acceptability Criteria (GC/MS)

- Chromatographic peak must be clearly identifiable, as well as internal standard peak
- Chromatographic peak must be within ±2% of analyte in standard
 - If analyte is not present in a standard, standard is analyzed under same conditions to verify retention time
- Mass spectrum minimum confidence of 70% compared to reference library spectrum
Chromatogram of MS124 (GC/MS)

- Amphetamine
- 4-Fluoroamphetamine
- 5-APB
- MDA
- MDMA
- Methylone
Sample Preparation (LC-QTOF)

• To 0.5 mL urine, add internal standard, water, 100 mM phosphate buffer (pH 6.0)

• To a copolymeric bonded phase extraction column:
 – **Condition:** Methanol, Water, 100 mM phosphate buffer
 – **Apply Sample**
 – **Wash:** Water, 100 mM Acetic Acid, Methanol, then DRY
 – **Elute:** Isopropanol, Ammonium Hydroxide, Methylene Chloride

• **Evaporate** (add 10% HCl) and **Reconstitute** with Mobile Phase
LC-QTOF Parameters

- Waters Acquity I-Class UPLC Conditions:
 - Mobile phase A: 5mM ammonium formate (pH 3.0)
 - Mobile phase B: 0.1% formic acid in acetonitrile
 - Column: Waters Acquity HSS C18 150mm x 2.1mm x 1.8µm
 - Flow rate: 0.4 mL/min
 - Column Temperature: 50°C
 - Injection Volume: 2µL

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>87</td>
<td>13</td>
</tr>
<tr>
<td>0.5</td>
<td>87</td>
<td>13</td>
</tr>
<tr>
<td>10.0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>10.75</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>12.25</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>12.5</td>
<td>87</td>
<td>13</td>
</tr>
<tr>
<td>15.0</td>
<td>87</td>
<td>13</td>
</tr>
</tbody>
</table>
LC-QTOF Parameters

• Xevo G2 QTOF Conditions:
 – Ionization: Positive electrospray
 • Capillary voltage: 0.8 kV
 • Sample Cone Voltage: 20 V
 • Extraction Cone Voltage: 4 V
 • Source Temperature: 140°C
 • Desolvation Temperature/Flow: 500°C/900 L/h
 – Resolution Mode: 50-1000 m/z
 • Collision Energy (Function 1) – 6eV
 • Collision Energy (Function 2) – 10-40eV
Acceptability Criteria (LC-QTOF)

- Chromatographic peak must be clearly identifiable, as well as internal standard peak
- Chromatographic peak must be within ±2% of analyte in standard or within ±0.3 min of analyte in database
 - If analyte is not present in a standard or database, standard is analyzed under same conditions to verify retention time
- Observed mass of molecular ion must be within ±5 ppm of mass in database
- Observed mass of fragment ion must be within ±5 ppm of mass in database
Chromatogram of MS124 (LC-QTOF)

- Amphetamine
- 4-Fluoroamphetamine
- 7-aminoclonazepam
- MDA
- MDMA
- Methylone
- α-PVP
- N-desmethyltramadol
GC/MS AND LC-QTOF RESULTS
GC/MS vs. LC-QTOF Positive Screens

- 5-FA
- MDMA
- Methamp/Amp
- Cocaine/Mets
- Methylone
- Dimethylone
- Ethylene/Butylene
- a-PVP
- 5-APB

Legend:
- GC
- LCQTOF
GC/MS vs. LC-QTOF Confirmation Rate

- 5-FA
- MDMA
- Methamp/Amp
- Cocaine/Mets
- Methylene
- Dimethylene
- Ethylene/Butylene
- a-PVP
- 5-APB

Legend:
- GC
- LCQTOF
<table>
<thead>
<tr>
<th>Analytes</th>
<th># Positives</th>
<th># Confirm Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methamp/Amp</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Cocaine/Mets</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>M ethylone</td>
<td>22</td>
<td>20</td>
</tr>
</tbody>
</table>
GC/MS vs. LC-QTOF

<table>
<thead>
<tr>
<th>Rate</th>
<th>GC/MS</th>
<th></th>
<th>LC-QTOF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Positivity Rate</td>
<td>49 80.3</td>
<td></td>
<td>63 103.3</td>
<td></td>
</tr>
<tr>
<td>False Negative Rate</td>
<td>12 19.6</td>
<td></td>
<td>0 0.0</td>
<td></td>
</tr>
<tr>
<td>Total Positive Samples</td>
<td>61 --</td>
<td></td>
<td>61 --</td>
<td></td>
</tr>
</tbody>
</table>

Alcohol Only Positives: 8
THC Only Positives: 16

Total Number of Positive Sample: $\frac{85}{104} = 82\%$
GC/MS Results

• Missed analytes:
 – Benzoylecgonine, THC, Cyclobenzaprine, DMAA, Alprazolam, Oxazepam, 7-aminoclonazepam, Psilocin, Buprenorphine, Azacyclonol, 3,4,5 Trimethoxy cocaine, PMMA, 2-CB

• Missed analytes due to sensitivity, no derivatization reagents used, poor chromatography on GC
LC-QTOF Results

- Missed or poor chromatography analytes:
 - Ecgonine Methyl Ester, THC, 5-APB, Nicotine, Cotinine

- Extra analytes detected due to: increased sensitivity of QTOF vs. confirmation technique, compounds not analyzed for in confirmation technique
Comparison Conclusion

- **GC/MS**
 - Decreased sensitivity
 - Library search capabilities
 - More false negatives
 - Identified less designer drugs
 - Data interpretation requires less training

- **LC-QTOF**
 - Increased sensitivity
 - Targeted screen
 - More unconfirmed positives
 - Identified more designer drugs
 - Data interpretation requires increased training
OVERALL RESULTS FOR ANALYTICAL TESTING
Combined % Confirmation Rate

THC
Benzodiazepines
Amines
Opiates
Cocaine
Basic Drugs
Designers
% Positive Rate in Sample Population

- THC: 50.0%
- Benzodiazepines: 20.0%
- Amines: 10.0%
- Opiates: 10.0%
- Cocaine: 20.0%
- Basic Drugs: 20.0%
- Designers: 30.0%
- Alcohol: 25.0%
Several participants indicated they had taken “Molly” in the last week.

Samples of subjects (9) who reported taking “Molly” contained:
- MDMA
- Methylone
- Alpha-PVP

Samples of subjects (15) who reported taking MDMA/Ecstasy contained:
- MDMA
- Methylone
- Dimethylone/Ethylone/Butylone
- Alpha-PVP
Thank You

- Thank you to everyone at AFMES for helping with all the aliquoting, extractions, data analysis, etc.

Aliquoting – Alex Layne, Lauryne Gauthier

Volatiles – HM2 Huseman, Amber Dickson

Immunosassay/GC/MS Base Screen – Garland Hayward

LC-QTOF Screen – John Kristofic

Quants – Joseph Addison, Sarah Shoemaker, Jessica Knittel, Jeff Chmiel

RapidFire – Dr. Arianne Motter, Jillian Neifeld

Synthetic Cannabinoids – Dona’Rae Boucek, Lauryne Gauthier

Project Coordination – CDR Bosy, Joseph Magluilo, Shawn Vorce, Justin Holler
Thank You

• Thank you to everyone involved in the grant for your participation and help

Melissa Friscia, Mandi Mohr, Dr. Barry Logan

The Center for Forensic Science Research and Education and the National Institute of Justice for providing funding in support of this research
Questions?

jyeakel@lvtox.com